On the Reactivity of Various Silicate Minerals toward Acids

By Hanzo MASE

(Received May 31, 1960)

As for the relative difficulty of dissolution of oxyacids and their salts toward water, a few qualitative rules have been proposed on the standpoint of ionic potential¹⁾. However, it is not too much to say that no comprehensive treatises on the reactivity of various silicate minerals toward ordinary acids (except hydrofluoric acid) have been reported, although the studies on the individual one have been

Previously, the author pointed out the

silicate minerals toward water and concentrated

sulfuric acid. Those requirements were sum-

marized as follows: 1) the silicates belonging

to either the neso- or the phyllo-silicates are

generally reactive; 2) in the phyllosilicates,

most of those of the 1:1 type (e. g., serpentine) are as a rule reactive, but those of the

^{2:1} type are not at all or only slightly reactive; and 3) the more electropositive the metallic undertaken by many investigators2). components are, the more reactive the silicates become. But the electropositivity of metals requirements for the frothing reaction of was not discussed in detail.

²⁾ W. Eitel, "The Physical Chemistry of the Silicates", The University of Chicago Press, Chicago, Illinois (1954), p. 965; S. Nagai and Y. Arai, Gypsum and Lime (Sekko to Sekai), 34, 7 (1958); J. Ando, J. Chem. Soc. Japan, Ind. Chem. Sec. (Kogyo Kagaku Zasshi), 63, 83 (1960).

¹⁾ G. H. Cartledge, J. Am. Chem. Soc., 50, 2855 (1928); V. M. Goldschmidt, J. Chem. Soc., 1937, 655; F. E. Wickman, Arkiv. Kemi, Min. Geol., 19B, No. 2 (1944); R. Tsuchida, Chemistry (Kagaku), 6, 6 (1951); 7, 88 (1952).

In this paper, the author attempted to make this problem clear by using various terms concerning the combining forces between the cations and the silicate ions, and also to explain it energetically from the bonding energies of silicate minerals.

Results from the Electropositivity of the Constituent Metals

It is well known in the field of crystal chemistry that the bonding force between various cations and silicate ions is related to the polarizing power of the cations or their tendencies to form covalent bonds with oxygen atoms. One may say that a cation with strong polarizing power or a pronounced tendency to make covalent bonds loosens bonds within a silicate ion, thus causing a splitting up of it into free acids. On the contrary, cations with small polarizing power allow strong bonds to form within the silicate ion and do therefore make stable silicate.

This polarizing power of cations is qualitatively or approximately measured with their ionic potentials (e.g., cation charge/cation radius), the ratio of cation charge to the square of cation radius (Goldschmidt's polarizing power), or the field strength around the cations³⁾, etc. (hereafter referred to as ϕ , ϕ' or F. S., respectively.)

Therefore, the author tried to calculate and to view the above mentioned values of various cations contained in silicate minerals. The results were listed in the following table⁴).

```
\phi; more than 4 Ti, Be, Al, Cr, V(III), Zr,
                  Fe(III), Mn(III).
                  Th, Sc.
   2 \sim 3
                  Y, Mg, Ni, Ce, La, Fe(II),
                  Zn, Mn(II).
   less than 2
                  Cu, Ca, Sr, Pb, Ba, Li, Na,
                  K.
\phi'; more than 6 Be, Ti, Al, Cr, V(III),
                  Fe(III), Mn(III).
   4~6
                  Zr, Sc.
   2 \sim 4
                  Th, Mg, Ni, Y, Fe(II), Zn,
                  Mn(II), Ce, La.
   less than 2
                  Cu, Ca, Li, Sr, Pb, Na, Ba,
F. S.; more than 0.7 Ti, Th, Al, Cr, Zr,
                  V(III), Fe(III), Be,
                  Mn(III).
   0.5 \sim 0.7
                  Sc, Y.
   0.4 \sim 0.5
                  Ce, La, Mg, Ni, Fe(II),
                  Zn, Mn(II).
   less than 0.4
                  Cu, Ca, Sr, Pb, Ba, Li, Na,
```

As shown in this table, the polarizing power of the following cations seems to be extremely great, and further the electropositivity of them to be small: e. g., Ti, Be, Al, Cr, V(III), Fe(III), Mn(III), Zr, etc. Thus the existence of these metals may contribute to the decrease of reactivity of silicate minerals. This conclusion is in agreement with the experimental results that kaolinite is not completely decomposed, although serpentine is easily attacked by acids.

As is generally known, all the silicate minerals were now divided into five classes structurally; namely, neso-, soro-, ino-, phyllo-, and tecto-silicate. According to this classification, it was at first in Tables I-V5) examined whether or not the singularity of the above eight metal ions is applicable to those silicates. In Tables I—V the results of reactions toward acids are made an entry. Most of them are cited from the data of Lange's Handbook⁶⁾, Dana's Textbook of Mineralogy⁷⁾, and Mellor's Treatise⁸). The parenthesized passage is referred to the author's prediction.

Nesosilicate Minerals.—The nesosilicates are termed the silicates having the structures with separated tetrahedra (SiO₄)⁴⁻ groups, and involve the following minerals listed in Table I.

Generally speaking, the results in Table I seem to indicate that the majority of nesosilicate minerals are able to react with acids, and to be decomposed with the formation of gelatinous silica, except the garnet group and a few particular complex silicate minerals. Also it is confirmed that one of the above eight metallic elements is inevitably contained in these insoluble nesosilicate minerals.

For example, phenacite (Be₂SiO₄) is not attacked by acids. This fact is probably due to the existence of Be atoms, which have very large ϕ , ϕ' and F. S. For the same reason, the garnet group minerals, euclase, topaz, zunyite, andalusite, sillimanite, mullite, kyanite, sapphirine, etc. may be not decomposed by acids. Moreover titanosilicate minerals containing Ti atoms are inactive toward acids. Although

³⁾ A. Dietzel, Naturwiss., 29, 537 (1941); Electrochem., 48, 9 (1942).

⁴⁾ The values of the ionic radii of various cations were quoted from C. W. Stillwell's "Crystal Chemistry", McGraw-Hill Book Co., Inc., New York (1938).

⁵⁾ The classification, species and structural formula of silicate minerals are based upon Sudo's system (which is primarily cited from Berman's and Swartz's systems and is revised and enlarged with the latest data.) and Strunz's Tables (H. Strunz, "Mineralogische Tabellen" (1958)).

H. Berman, Am. Mineralogist, 22, 342 (1937); O. K. Swartz, ibid., 22, 1073, 1161 (1937); T. Sudo, "Mineral Chemistry (Kobutsu Kagaku) (II)", Kyoritsu Shuppan Co., Ltd. (1959), p. 259.

6) Lange's Handbook of Chemistry (1949).

Dana's Textbook of Mineralogy (1959).

W. Mellor, "A Comprehensive Treatise on Inorganic and Theoretical Chemistry", Vol. VI (1925).

TABLE I. REACTIVITY OF NESOSILICATE MINERALS TOWARD ACIDS

N		Reactivity	Bonding
Minerals	Chemical formula	toward acids	energy (kcal.)
	Mg, Fe, Pb) (Mg, Fe, Mn, Zn) SiO ₄		
Forsterite	Mg ₂ SiO ₄	Gel. a.	29796
Olivine	(Mg, Fe) ₂ SiO ₄	Gel. a.	(29904)*17
Hortonolite	(Mg, Fe, Mn) ₂ SiO ₄	Gel. a.	(20000)
Fayalite	Fe ₂ SiO ₄	Gel. a.	(29880)
Knebelite	(Fe, Mn) ₂ SiO ₄	Gel. a.	
Tephroite	(Mn, Zn, Mg) ₂ SiO ₄	Gel. a.	
Roepperite	(Fe, Mn, Zn) ₂ SiO ₄	Gel. HCl Gel. HCl	
Glaucochroite	CaMnSiO ₄		(20259)
Monticellite	CaMgSiO ₄	Gel. HCl	(29358)
Larsenite	PbZnSiO ₄	Sol. HNO ₃	
Calcium Larsenite	(Pb, Ca)ZnSiO ₄	Sol. HNO₃ Sol. HCl	(28020)
Larnite	Ca ₂ SiO ₄	Sol. HCl	(28920)
Merwinite	$Ca_3Mg(SiO_4)_2$	Soi. HCi	(29139)
Phenacite group X ₂ SiO ₄	D- CO	Insol.	
Phenacite	Be ₂ SiO ₄	Gel. a.	
Willemite	Zn ₂ SiO ₄	Gel. a.	
Troostite	(Zn, Mn) ₂ SiO ₄	Sol. HCl	
Trimerite	CaMn ₂ (BeSiO ₄) ₃	Soi. HCi	
Humite group nMg ₂ SiO ₄ ·1 Norbergite		Gel. a.	(27632)*2)
Chondrodite	$Mg_2SiO_4 \cdot Mg(OH, F)_2$ 2 " "	Gel. a.	$(28498)^{*2}$
Humite	3 " . "	Gel. a.	$(28869)^{*2}$
Clinohumite	4 " . "	Gel. a.	(29075)*2)
Hodgkinsonite group X_{2r+}		Ger. a.	(2)0/3)
Hodgkinsonite Hodgkinsonite	$(Zn_2Mn) (SiO_4) (OH)_2$	Sol. a.	
Alleghanyite	$Mn_5(SiO_4)_2(OH, F)_2$	Sol. a.	
Leucophoenicite	$Mn_7(SiO_4)_2(OH, P)_2$ $Mn_7(SiO_4)_3(OH)_2$	Sol. a.	
Garnet group $X_3Y_2(ZO_4)_3$		501. a.	
Garnet group A ₃ 1 ₂ (2O ₄) ₃	Y=Al, Fe(III), Cr, Ti, Mn		
	Z=Si, Ti		
(1) Almandite series (Mg, Fe, $Mn)_3Al_2(SiO_4)_3$		
Pyrope (1) Aimanute series (Mg ₃ Al ₂ (SiO ₄) ₃	Insol.	(31836)
Almandite	Fe ₃ Al ₂ (SiO ₄) ₃	Insol.	31878
Spessartite	Mn ₃ Al ₂ (SiO ₄) ₃	Insol.	21070
(2) Andradite series	14113612(0104/3	1115017	
Grossularite	$Ca_3Al_2(SiO_4)_3$	Insol.	(31398)
Andradite	$Ca_3Fe_2(SiO_4)_3$	Insol.	(010)0)
Uvarovite	$Ca_3Cr_2(SiO_4)_3$	Insol.	
Titanium Garnet	$Ca_3(Al, Fe(III), Fe(II), Ti)_2[(Si, Ti)O_4]_3$	Insol.	
Zircon group XSiO ₄			
Zircon	ZrSiO ₄	Mostly insol.	
Thorite	ThSiO ₄	Gel. a.	
Wöhlerite group W ₃ X(ZO	· ·		
Rosenbuschite	(Na, Ca) ₃ (Fe, Ti, Zr) (SiO ₄) ₂ F	Sol. HCl	
Wöhlerite	$(Ca, Na)_3(Zr, Ta)(SiO_4)_2F$	Sol. HCl	
Hiortdahlite	(Ca, Na) ₃ (Fe, Mn, Zr, Ti) (SiO ₄) ₂ (F, OH)	(Sol. HCl)	
Guarinite	(Ca, Na) ₃ (Fe, Mn, Zr, Ta) (SiO ₄) ₂ (O, F, OH)	Gel. HCl	
Johnstrupite	(Ca, Na, Ce) ₃ (Al, Mg, Ti, Ce) (SiO ₄) ₂ (F, OH)	Sol. HCl	(29850)*3>
Rinkite	(Ca, Na) ₆ (Ce, Zr, Ti) ₇ (SiO ₄) ₁₀ F ₇	Decomp. H ₂ SO ₄	
Rinkolite	(Ca, Na) ₆ (Ce, Ti) ₃ (SiO ₄) ₄ (F, OH) ₄	(Decomp. a.)	
Mosandrite	$(Ca, Na)_{12}Ce_3(Zr, Ti, Mg)_4(SiO_4)_{10}F_5$	Sol. HCl	
Låvenite	(Ca, Na) (Zr, Ta, Fe, Ti, Mn) (SiO ₄) F	Sl. sol. HCl	
Britholite	$Ca_3Ce_4[(Si, P)O_4]_4(OH, F)_3$	(Decomp. a.)	
Hellandite	$Ca_3(Y, Er)_4(Al, Fe(III), Mn(III))_5(SiO_4)_6(OH)_9$	Sol. HCl	

TABLE I. (Continued)

	(
Minerals	Chemical formula	Reactivity toward acids	Bonding energy (kcal.)
Lessingite Beckelite	$Ca_2(Ce, La, Na)_3(SiO_4)_3(OH, F)$	(Decomp. a.) Sol. a.	, ,
Datolite group		501. a.	
Datolite Broup	Ca B (SiO) (OH)	Gel. HCl	
Euclase	$Ca_2B_2(SiO_4)_2(OH)_2$ Al(BeOH)SiO ₄	Insol.	
Homilite	$Ca_2Fe(II)Be_2(SiO_4)_2O$	Gel. HCl	
Gadolinite	$Ca_2Fe(II)Be_2(SiO_4)_2O$ $Y_2Fe(II)Be_2(SiO_4)_2O_2$	Gel. ACI	
Misc.	1 2 Fe (11) Be2 (S1O4) 2O2	Gei. a.	
Topaz	$Al_2SiO_4(F, OH)_2$	Sl. decomp. H ₂ SC	. 31712
Ilvaite	Ca(Fe, Mn) ₂ Fe(III) (SiO ₄) ₂ (OH)	Gel. a.	4 51/12
Afwillite	$Ca_3(SiO_3OH)_2 \cdot 2H_2O$	(Decomp. a.)	
α -Eucryptite	α -LiAl(SiO ₄)	Gel. HCl	
Eulytite	Bi ₄ (SiO ₄) ₃	Gel. HCl	
Zunyite	$Al_{12}(Si_2O_7)_2(SiO_4) (AlO_4) (OH, F)_{18}Cl$	Insol.	
Quasi-silicates	1112(01201)2(0104) (11104) (011, 171001		
Aluminum silicates			
Andalusite	Al ₂ SiO ₅	Insol.	
Sillimanite	Al ₂ SiO ₅	Insol.	31957
Mullite	$(Al_2O)_6(SiO_4)_6(Al_2O_7)$	Insol.	
Kyanite	Al ₂ SiO ₅	Insol.	
Staurolite	$Fe(II)Al_4Si_2O_{10}(OH)_2$	Sl. decomp. H ₂ SC	31828
Kentrolite group	, , , , , , , , , , , , , , , , , , , ,	•	
Kentrolite	$Pb_3Mn(III)_4Si_3O_{15}$	Sol. a.	
Melanotekite	$Pb_3Fe(III)_4Si_3O_{15}$	Decomp. HNO ₃	
Titanosilicates			
Titanite	CaTiSiO ₅	Sol. H ₂ SO ₄	(32942)
Lorenzenite	$Na_2(Zr, Ti)_2Si_2O_9$	Insol. HCl	
Ramsayite	$Na_2Ti_2Si_2O_9$	(Insol.)	(33845)
Lamprophyllite	$Na_3Sr_2Ti_3(SiO_4)_4(O, OH, F)_2$	(Insol.)	
Fersmanite	$Ca_4Na_4Ti_4Si_3O_{18}F_2$ (?)	(Insol.)	
(App.)			
Dumortierite	$(Al, Fe)_7BSi_3O_{18}$	Insol. HF	
Serendibite	$(Ca, Mg)_5Al_5BSi_3O_{20}$	(Insol.)	
Sapphirine	$Mg_2Al_4SiO_{10}$	Insol.	(31283)
Ardennite	$Mn_5Al_5(V, As)O_4Si_5O_{20}(OH)_2 \cdot 2H_2O$	(Insol.)	
Kornerupine	(Mg, Fe, Al) ₄ (Al, B) ₆ Si ₄ O ₁₆ (O, OH) _{5~6}	(Insol.)	
Cappelenite	(Ba, Ca, Ce, Na) $_3$ (Y, Ce, La) $_6$ B $_6$ Si $_3$ O $_2$ 7	Sol. HCl	
Melancocerite	$Ca_{16}Na_4(Y, La)_3(Zr, Ce)_6B_3Si_{12}O_{57}F_{12}$	Decomp. HCl	
Uranosilicates			
Uranophane	$Ca(H_3O)_2(UO_2)(SiO_4)_2 \cdot 3H_2O$	Gel. HCl	
Sklodowskite	$MgU_2O_2(OH)_2(SiO_4)_2 \cdot 4H_2O$	Gel. HCl	
Kasolite	PbUO ₂ SiO ₄ ·H ₂ O	Gel. HCl	
Soddyite	(UO2)2SiO4·2H2O (?)	Gel. HCl	

(Abbreviations used in Tables I-V.)

a.: acids; abbr.: abbreviation; app.: appendix; conc.: concentrated; decomp.: decomposed (by); gel.: gelatinize; insol.: insoluble (in, or, in acids); misc.: miscellanea; sl.: slightly; sol: soluble (in); undecomp.: undecomposed (by).

(The minerals cited in the appendixes in these tables are unassigned up to the present.)

- *1) This value was calculated regarding the compositional formula of olivine as 9Mg₂SiO₄·Fe₂SiO₄·
- *2) These values were calculated regarding $nMg_2SiO_4 \cdot Mg(OH, F)_2$ as $nMg_2SiO_4 \cdot Mg(OH)_2$.
- *3) This value was calculated regarding the chemical formula of johnstrupite as ideally $Ca_3A1(SiO_4)_2(OH)$.

TABLE II. REACTIVITY OF SOROSILICATE MINERALS TOWARD ACIDS

Minerals	Chemical formula	Reactivity toward	Bonding energy
		acids	(kcal.)
Benitoite	BaTi(Si ₃ O ₉)	Sol. HF	
Rhodonite series	(14 - G.) G. O	Cl and HCl	
Rhodonite	$(Mn, Ca)_5Si_5O_{15}$	Sl. sol. HCl	
Pyroxmangite	$(Mn, Ca)_7Si_7O_{21}$	Insol. a.	
Wollastonite group	G: 51 O	December IICI	
Wollastonite	Ca ₃ Si ₃ O ₉	Decomp. HCl (Decomp. HCl)	
Bustamite	(Ca, Mn) ₃ Si ₃ O ₉	Gel. HCl	
Pectolite Alamosite	Ca ₂ NaH(SiO ₃) ₃	(Gel. HNO ₃)	
Catapleiite series	PbSiO ₃	(Gel. HNO3)	
Catapleiite Series	$Na_2Zr(Si_3O_9) \cdot H_2O$	Sol. HCl	
Eudialyte	$(Na, Ca, Fe)_6 Zr Si_6 O_{18} (OH, Cl)$	Gel. HCl	
Steenstrupine	$(\text{Ca, Na})_4\text{Mn}(\text{Ce, La, Al, Fe}(\text{III}))_6(\text{Si, Ti})_9\text{O}_{27}(\text{Ce, Na})_4\text{Mn}(\text{Ce, La, Al, Fe}(\text{III}))_6(\text{Si, Ti})_9\text{O}_{27}(\text{Ce, Na})_4\text{Mn}(\text{Ce, La, Al, Fe}(\text{III}))_6(\text{Si, Ti})_9\text{O}_{27}(\text{Ce, Na})_8\text{Mn}(\text{Ce, La, Al, Fe}(\text{III}))_6(\text{Si, Ti})_9\text{O}_{27}(\text{Ce, Na})_8\text{Mn}(\text{Ce, La, Al, Fe}(\text{III}))_6(\text{Si, Ti})_9\text{O}_{27}(\text{Ce, Na})_8\text{Mn}(\text{Ce, La, Al, Fe}(\text{III}))_6(\text{Si, Ti})_9\text{O}_{27}(\text{Ce, La, Al, Fe}(\text{III}))_6(\text{Si, Ti})_9\text{O}_{2$		
-		Decomp. a.	
Tourmaline series WX ₃ Y ₆		**-1	
Dravite	NaMg3B3Al3(Al3Si6O27)(OH)4	Undecomp. a.	
Uvite	$CaMg_3B_3Al_3(Al_3Si_6O_{27})(O, OH)_4$	Undecomp. a.	
Indigolite	Na(Al, Fe(II), Li, Mg) $_3B_3Al_3(Al_3Si_6O_{27})(O, OH_{27})$		
Tourmaline	(Na, Ca) (Mg, Fe(II), Fe(III)) $_3B_3Al_3(Al_3Si_6O_{27})$		comp. a.
Schorl	$NaFe_3B_3Al_3(Al_3Si_6O_{27})(OH)_4$	Undecomp. a.	
Misc.	G (71 O) (77 O	Cal HCI	
Dioptase	$Cu_6(Si_6O_{18}) \cdot 6H_2O$	Gel. HCl	
Axinite	(Fe, Mn)Ca ₂ Al ₂ (BO ₃) (Si ₄ O ₁₂) (OH)	Undecomp. a. Insol.	
Beryl	Al ₂ Be ₃ Si ₆ O ₁₈		
Osumilite	(K, Na, Ca)(Mg, Fe(II)) ₂ (Al, Fe(III), Fe(II)) ₃	(Sl. decomp. a.)
Indialite	$(Mg, Fe)_2Al_3(Si_5, Al)O_{18}$	(Sl. decomp.)	(31920)*1)
Cordierlite	$(Mg, Fe)_2Al_3(Si_5, Al)O_{18}$	Sl. decomp. a.	(31920)*1)
Thalenite group			
Thalenite	$Y_2Si_2O_7$	(Insol. a.)	
Thortveiteit	$(Sc, Y)_2Si_2O_7$	Insol. HCl	
Cerite	(Ce, Y, Pr, Nd) $_2$ Si $_2$ O $_7$ ·H $_2$ O	Gel. HCl	
Rowlandite	$(Y, Ce, La)_4Fe(II)(Si_2O_7)_2F_2$	Gel. HCl	
Melilite series	G 34 81 G	0.1. 7701	20201
Akermanite	Ca ₂ MgSi ₂ O ₇	Gel. HCl	30391
Gehlenite	$Ca_2Al(AlSiO_7)$	Gel. HCl	26890
Melilite	$(Ca, Na)_2(Al, Mg)(Si, Al)_2O_7$	Gel. HCl	
Hardystonite	Ca ₂ ZnSi ₂ O ₇	Gel. HCl	
Leucophanite	(Ca, Na, H) ₂ BeSi ₂ O ₆ (OH, F) (?)	Sol. HF	
Meliphanite	$(Ca, Na)_2(Be, Al)Si_2O_6F$	(Insol.)	
Barysilite group	DL C: O	Gel. HNO ₃	
Barysilite Ganomalite	Pb ₃ Si ₂ O ₇	Gel. HNO ₃	(27383)*2)
Nasonite	Pb ₆ Ca ₄ (Si ₂ O ₇) ₈ (OH) ₂	Gel. HNO ₃	(2/303)
Hemimorphite group	$Pb_6Ca_4(Si_2O_7)_3Cl_2$	Gei. IIIIO3	
Hemimorphite group	$Zn_4(OH)_2Si_2O_7 \cdot H_2O$	Gel. a.	
Clinohedrite	$Ca_2Zn_2Si_2O_7(OH)_2 \cdot H_2O$	Gel. HCl	
Bertrandite	$\text{Be}_4\text{Si}_2\text{O}_7(\text{OH})_2$	Insol. a.	
Cuspidine	$Ca_4Si_2O_7(CH)_2$ $Ca_4Si_2O_7(F, OH)_2$	(Gel. HCl, HNC) ₀) (28427)* ³)
Molybdophyllite	$Ca_4Si_2O_7(F, OH)_2$ $Pb_2Mg_2Si_2O_7(OH)_2$	(Gel. HNO ₃)	(2012) S
Murmanite	$NaTiSiO_4(OH) (?)$	(Insol. a.)	(32, 164) (?)
(App.)	1.44 1101O4(O11) (1)	(111501. 4.)	(32,104) (1)
Barylite	BaBe ₂ Si ₂ O ₇	Insol.	
Lawsonite	CaAl ₂ Si ₂ O ₇ (OH) ₂ ·H ₂ O	Insol.	(31,030)
Danburite	CaB ₂ Si ₂ O ₈	Sl. decomp. HC	
Danounto		and accomp.	-

Bonding

Reactivity

TABLE II. (Continued)

Minerals	Chemical formula	Reactivity toward acids	Bonding energy (kcal.)
Astrophyllite	$(K_2, Na_2, Ca)(Fe, Mn)_4 (Ti, Zr)Si_4O_{14}(OH)_2$	Decomp. HCl	
Aenigmanite	(Na, Ca, K) ₄ (Fe(II), Mn, Fe(III), Ti, Al) ₁₃ (Si ₂	$O_7)_6$ (?)	
-		Sl. sol. a.	
Vesuvianite	$Ca_{10}Al_4(SiO_4)_5(Si_2O_7)_2 \cdot 2(Mg, Fe)(OH)_2$	Sl. decomp. HCl	
Epidote group W ₂ Y ₃ (ZO ₄)	$(OH)(Z_2O_7)O$		
Zoisite	$Ca_2Al_3(SiO_4)(Si_2O_7)O(OH)$	Insol.*4)	
Epidote series			
Clinozoisite	$Ca_2Al_3(SiO_4)(Si_2O_7)O(OH)$	Insol.	
Epidote	$Ca_2(Al, Fe)_3(SiO_4)(Si_2O_7)O(OH)$	Sl. decomp. HCl	
Piedmontite	$Ca_2(Al, Fe, Mn)_3(SiO_4)(Si_2O_7)O(OH)$	(Sl. decomp. a.)	
Allanite series			
Allanite	(Ca, Ce, La, Na)2(Al, Fe, Mn, Be, Mg)3(SiO4)	$(Si_2O_7)O(OH)$	
		Gel. HCl	
Nagatelite	(Ca, Ce) ₂ (Al, Fe(III), Fe(II)) ₃ [(P, Si)O ₄][(P, S	$i)_2O_7]O(OH)$	
		Sol. HCl, HNO ₃	
Pumpellyite	$Ca_4(Mg, Fe, Mn)(Al, Fe, Ti)_5Si_6O_{23}(OH)_3 \cdot 2H_2O$	(Sol. HCl)	

- *1) These values were calculated regarding (Mg, Fe)2Al3(Si5, Al)O15 as Mg2Al3(Si5, Al)O18.
- *2) This value was calculated regarding the chemical formula of ganomalite as Ca10(Si2O7)3(OH)2-
- *3) This value was calculated regarding $\cdots \cdot (F, OH)_2$ as $\cdots \cdot (OH)_2$.
- *4) The fine powder of zoisite is completely decomposed by boiling hydrochloric acid.

TABLE III. REACTIVITY OF INOSILICATE MINERALS TOWARD ACIDS

Minerals	Chemical formula	toward acids	energy (kcal.)
Pyroxene group W(X,	$Y)(Z_2O_6)$ W=Ca, Na, K, Mg, Mn.		
	X, Y=Mg, Fe(II), Al, Ti, Li,	Mn, Fe(III), Cr, Ni.	
	Z=Si, Al.		
(1) Enstatite series	WXZ_2O_6		
Enstatite	$Mg_2Si_2O_6$	Insol. HCl	32344
Hyperthene	$(Mg, Fe)_2Si_2O_6$	Insol. a.	
(2) Pigeonite series			
Clinoenstatite	$Mg_2Si_2O_6$	Insol. a.	
Pigeonite	$(Ca, Mg)(Mg, Fe)Si_2O_6$	(Insol. a.)	
(3) Diopside series	$W(X, Y)Z_2O_6$		
Diopside	CaMgSi ₂ O ₆	Insol. a.	32052
Hedenbergite	CaFeSi ₂ O ₆	Insol. HCl	(32080)
Augite	(Ca, Mg)(Mg, Fe, Al)(Al, Si) $_2$ O ₆	Insol. a.	30728
Schefferite	Ca(Mg, Fe, Mn)Si ₂ O ₆	(Insol. a.)	
Jeffersonite	Ca(Mg, Mn, Zn)Si ₂ O ₆	(Insol. a.)	
(4) Acmite-Jadeite s	eries WYZ ₂ O ₆		
Acmite	$NaFe(III)Si_2O_6$	Very sl. sol. a.	
Jadeite	NaAlSi ₂ O ₆	Insol. a.	(33848)
Aegirite	(Ca, Na) (Mg, Fe(III), Al)Si ₂ O ₆	Insol. a.	
Spodumene	LiA1Si ₂ O ₆	Insol. a.	
(App.)			
Margarosanite	(Pb, Ca, Mn)SiO₃	Gel. HNO₃	
Babingtonite	$Ca_2Fe(II)Fe(III)Si_5O_{14}(OH)$	Gel. HCl	
Taramellite	$BaFeSi_2O_6(OH)$	Insol. a.	
Hyalotekite	(Pb, Ca, Ba) $_4$ BSi $_6$ O $_{17}$ (F, OH)	Insol. a.	
Neptunite	Na ₂ FeTiSi ₄ O ₁₂	Insol. HF	(33938)

TABLE III. (Continued)

Minerals	Chemical formula	Reactivity toward acids	Bonding energy (kcal.)
Calcium metasilicates			, ,
Inesite	$Ca_2Mn_7H_2Si_{10}O_{30} \cdot 5H_2O$	(Sol. HCl)	
Hillebrandite	Ca ₂ SiO ₄ ·H ₂ O	Sol. HCl	(28027)*1)
Riversideite	$Ca_5H_2Si_6O_{18} \cdot 2H_2O$	Sol. HCl	(31285)
Copper metasilicates			
Chrysocolla	CuSiO ₃ ·nH ₂ O	Decomp. a.	
Shattuckite	8CuSiO ₃ ·4H ₂ O	(Decomp. a.)	
Plancheite	14CuSiO ₃ ·4H ₂ O	(Decomp. a.)	
The others	11045104 11120	(Decemps an)	
Carpholite	MnAl ₂ Si ₂ O ₆ (OH) ₄	Insol. HCl	
Stokesite	CaSnSi ₃ O ₉ ·2H ₂ O	Insol. a.	
Searlesite	NaBSi ₂ O ₆ ·H ₂ O	Decomp. HCl	
Bavenite	Ca ₄ AlBe ₃ HSi ₉ O ₂₇ ·H ₂ O	(Sl. sol. a.)	
Cainosite	$Ca_{4}Aibe_{3}HSi_{9}O_{27} \cdot H_{2}O$ $Ca_{2}(Ce, Y)_{2}Si_{4}O_{12}CO_{3} \cdot 1 \sim 2H_{2}O$	Sol. HCl	
Epididymite		Very sl. sol. a.	
Elpidite	NaBeSi ₃ O ₇ (OH)	(Sl. sol. a.)	
-	$Na_2(Zr, Ti)Si_6O_{15} \cdot 3H_2O$	Decomp. HF	
Leucosphenite Ussingite	Ba(Na, Ca) ₄ Ti ₈ BSi ₈ O ₂₇	Gel. HCl	
•	$Na_2AI(Si_3O_8)(OH)$	Gei. HCi	
	$(Y)_{7\sim8}(Z_4O_{11})_2(O, OH, F)_2$		
(1) Anthophyllite serie			
Anthophyllite	$(Mg, Fe)_7Si_8O_{22}(OH)_2$	Insol.	
Gedrite	$(Mg, Fe, Al)_7(Al, Si)_8O_{22}(OH)_2$	(Insol.)	
(2) Cummingtonite ser			
Cummingtonite	$(Mg, Fe)_7Si_8O_{22}(OH)_2$	(Insol.)	
Grunerite	$(Mg, Fe, Mn)_7Si_8O_{22}(OH)_2$	Insol. a.	
Kupfferite	$\mathrm{Mg_7Si_8O_{22}(OH)_2}$	(Insol.)	(32430)
(3) Tremolite series		_	
Tremolite	$Ca_2Mg_5Si_8O_{22}(OH)_2$	Insol.	32284
Actinolite	$Ca_2(Mg, Fe)_5Si_8O_{22}(OH)_2$	Insol.	
	$W_6(X, Y)_{10}(Z_4O_{11})_4(O, OH, F)_4$		
Edenite	$Ca_4Na_2Mg_{10}Al_2Si_{14}O_{44}(OH, F)_4$	(Insol.)	(31272)*2)
Pargasite	$Ca_4Na_2Mg_9Al_4Si_{13}O_{44}(OH, F)_4$	(Insol.)	(31088)*3)
Hastingsite	$Ca_4Na_2Mg_8Al_6Si_{12}O_{44}(OH, F)_4$	(Insol.)	(30904)*3)
Hornblende	$Ca_4Na_2(Mg, Fe(II))_8(Al, Fe(III), Ti)_6Si_{12}O_{44}(OF_{12})_8$		
Kaersutite	$Ca_4Na(Mg, Fe(II))_7(Al, Fe(III))_6Ti_2Si_{12}O_{46}(OH)_2$		(
Arfvedosonite	$Na_6Mg_8Al_2Si_{16}O_{44}(OH, F)_4$	Insol. a.	$(32538)^{*2}$
"	$Ca_2Na_4Fe(II)_7(Al, Fe(III))_6Si_{13}O_{44}(OH)_4$	Insol. a.	
Holmquistite	$CaNaLi_2Mg_6Al_5Si_{15}O_{44}(OH)_2$	(Insol. a.)	(22122) #22
Glaucophane	$Na_4Mg_6Al_4Si_{16}O_{44}(OH, F)_4$	Insol. a.	(33182)*2)
Riebeckite	$Na_6Fe(II)_6Fe(III)_4Si_{16}O_{46}(OH)_2$	Insol. a.	
Narsarsukite	$Na_2(Ti, Fe(III))Si_4(O, OH, F)_{11}$	Insol. a.	(20160) #23
Chrysotile	$(Mg, Fe)_6Si_4O_{11}(OH)_6 \cdot H_2O$	Decomp. H ₂ SO ₄	(29468)*3)
(App.)			
Sepiolite	$Mg_8H_2(Si_4O_{11})_3 \cdot 3H_2O$	Decomp. HCl	(32627)
Attapulgite	$Mg_5Si_8O_{20}(OH)_2 \cdot 8H_2O$	(Decomp. a.)	(31076)

^{*1)} This value was calculated regarding the chemical formula of hillebrandite as Ca₂SiO₃(OH)₂.
*2) These values were calculated regarding(OH, F, or, OH, O)₄ as (OH)₄.
*3) This value was calculated regarding (Mg, Fe)₆..... as Mg₆......

TABLE IV. REACTIVITY OF PHYLLOSILICATE MINERALS TOWARD ACIDS

TABLE IV. REACTIVITY OF PHYLLOSILICATE MINERALS TOWARD ACIDS			
Minerals	Chemical formula	Reactivity Bonding toward energy acids (kcal.)	
	Phyllosilicates of aluminum.	,,	
	$Y_{b}Si_{4}O_{10}(OH)_{3b-4} \cdot sH_{2}O$		
	Y=Al, Fe(III), rarely Cr; $p=2\sim3$; $s=0\sim4$.		
2:1 Type	1-11, 10(11), 11101, CI, p=2-5, 0-6-1		
Pyrophyllite	$Al_2Si_4O_{10}(OH)_2$	Sl. decomp. HCl 32558	
1:1 Type kaolin mines		on decemp. Her bees	
Kaolinite	Al ₄ Si ₄ O ₁₀ (OH) ₈	Sl. decomp. HCl	
Dickite	// // // // // // // // // // // // //	(Sl. decomp. HCl) 32165	
Nacrite	"	(Sl. decomp. HCl)	
Nacrite	Phyllosilicates	(bit decompt 1101)	
	of iron, magnesium, calcium and manganese.		
2:1 Type	or mon, magnesium, careram and manganese.		
Talc	$Mg_3Si_4O_{10}(OH)_2$	Undecomp. a. (32516)	
	$(Fe(II), Mg)_{5.5}$ (Si, Al, $Fe(III))_8O_{18.5}(OH)_{5.5}$	(Undecomp. a.)	
Minnesotaite	(Fe(II), Mg)5.5 (SI, AI, Fe(III))8018.5(OII)5.5	(Ondecomp. a.)	
Chlorite graup (abbr.)	(abba)	Decomp. H ₂ SO ₄	
Clinochlore	(abbr.)	Decomp. H ₂ SO ₄	
Penninite	(abbr.)		
Prochlorite	(abbr.)	Decomp. hot H ₂ SO ₄	
Montmorillonite group	(T. C.)*() (41 May)(C. O. (OTT)	Daniel Latting	
Montmorillonite	(E. C.)* $^{10}_{0.67}$ (Al _{3.33} Mg _{0.67})Si ₈ O ₂₀ (OH) ₄	Decomp. boiling a.	
Beidellite	(E. C.)* $^{1)}_{0.67}$ Al ₄ (Si _{7.33} Al _{0.67})O ₂₀ (OH) ₄	(Decomp. boiling a.)	
Nontronite	(E. C.)* $^{10}_{0.67}$ Fe ₄ (Si _{7.33} Al _{0.67})O ₂₀ (OH) ₄	Gel. HCl	
Saponite	(E. C.)* $^{10}_{0.67}$ Mg ₆ (Si _{7.33} Al _{0.67})O ₂₀ (OH) ₄	Decomp. H ₂ SO ₄	
Iron-saponite	(E. C.)* 1 _{0.67} (Mg, Fe) ₆ (Si _{7.33} Al _{0.67})O ₂₀ (OH) ₄	(Decomp. a.)	
Sauconite	(E. C.)* $^{1)}_{0.67}$ (Mg, Fe, Zn) $_{6}$ (Si _{7.33} Al _{0.67})O ₂₀ (OH) $_{4}$	(Decomp. a.)	
Vermiculite group			
Vermiculite	$(Mg, Fe)_{2\sim3}(Si, Al, Fe(II))_4O_{10}(OH)_2\cdot4H_2O$	(Decomp. a.)	
Brittle mica group			
Chalcodite	$(Mg, Fe)_{13}Al_4Si_{18}O_{50}(OH)_{10} \cdot 10H_2O$	(Decomp. a.)	
Epichlorite	$(Mg, Fe)_{10}Al_6Si_{18}O_{40}(OH)_{10} \cdot 8H_2O$	(Decomp. a.)	
Stilpnomelane	(K, Na, Ca) $_{0\sim1}(Fe(II), Mg, Al, Fe(III))_{7\sim8}Si_8G$	$O_{22\sim24}(OH)_{2\sim4}\cdot H_2O$	
		(Decomp. a.)	
Margarite	$CaAl_2(Al_2Si_2)O_{10}(OH)_2$	Sl. decomp. HCl (30914)	
Prehnite	$Ca_2Al_2Si_3O_{10}(OH)_2$	Sl. decomp. HCl (31496)	
Chloritoid	$(Fe, Mg)_2Al_4Si_2O_{10}(OH)_4$	Decomp. H_2SO_4 (29976)*2)	
Clintonite	$X_4Z_4O_{10}(OH)_2$		
	X=Mg:Ca:Al=3:2:1, Al:Si=2:1.	Decomp. hot & conc. a.	
Xanthophyllite	$(Mg, Ca, Al)_4(Si, Al)_4O_{10}(OH)_2$	(Decomp. a.)	
Mica group			
(1) Muscovite series			
Muscovite	$KAl_2(AlSi_3)O_{10}(OH, F)_2$	Insol. 32494	
Phengite	$K_4Mg_2Al_8Si_{14}O_{40}(OH)_8$	Insol. (32858)	
Alurgite	$K_4Mg_3Al_7Si_{14}O_{39}(OH)_9$	(Insol.)	
Paragonite	$Na_4Al_{12}Si_{12}O_{40}(OH)_8$	Insol. HCl (32540)	
Roscoelite	$K_4V_8Al_4Si_{12}O_{40}(OH)_8$	Sl. decomp. H ₂ SO ₄	
(2) Biotite series			
Biotite	$K_4(Mg, Fe)_{12}Al_4Si_{12}O_{40}(OH)_8$	Decomp. H ₂ SO ₄ 30475	
Phlogopite	$K_4Mg_{12}Al_4Si_{12}O_{40}(OH)_8$	Decomp. H ₂ SO ₄ (30454)	
Cryophyllite	$K_4Mg_{10}Al_8Si_{10}O_{40}(OH)_8$	(Decomp. H ₂ SO ₄) (30090)	
(3) Lepidolite series			
Lepidolite	$K_4Mg_4Li_4Al_8Si_{12}O_{40}(OH)_4F_4$	Very sl. sol. HCl	
"	K ₄ Li ₆ Al ₈ Si ₁₄ O ₄₂ (OH) ₄ F ₂	(")	
"	K ₄ Li ₆ Al ₇ Si ₁₄ O ₃₉ (OH) ₂ F ₇	(")	
Zinnwaldite	K ₄ Fe(II) ₄ Li ₄ Al ₈ Si ₁₂ O ₄₀ (OH) ₄ F ₄	Sl. sol. HCl	
Polylithionite	K ₄ Li ₈ Al ₄ Si ₁₆ O ₄₀ F ₈	(Sl. sol. HCl)	
2 ,	1010-10- V	,	

TABLE IV. (Continued)

	TABLE IV. (Continued)		
Minerals	Chemical formula	Reactivity toward acids	Bonding energy (kcal.)
(Misc.)			
Glauconite	$K_{2\sim3}(Mg, Fe, Ca)_{1\sim3}(Fe(III), Al)_{3\sim6}(Si_{13\sim14}A)_{3\sim14}(Si_$	Al _{2~3})O _{38~40} (OH) _{6~10} Decomp. HCl	
(App.)			(
Pholiodolite	$KMg_6AlSi_7O_{20}(OH)_4 \cdot 3H_2O$	(Decomp. HCl)	(30733)
Cookeite	$(Li, Al)_4(Si, Al)_4O_{10}(OH)_4 \cdot 2H_2O$	Decomp. H ₂ SO ₄	
Bityite	$CaLiAl_3BeSi_2O_{10}(OH)_2$	(Insol.)	
Ganophyllite	$NaMn_6Al_2(Si_4O_{10})_2(OH)_{11}$ (?)	(Decomp. a.)	
1:1 Type			
Antigorite	$Mg_6Si_4O_{10}(OH)_8$	Decomp. H ₂ SO ₄	(29445)
Greenalite	$(Fe(II), Mg)_9Fe(III)_2Si_8O_{22}(OH)_{12}\cdot 2H_2O$	(Decomp. H ₂ SO ₄	
Neponite	$(Mg, Ni)_6Si_4O_{10}(OH)_8$	(Decomp. H ₂ SO ₄	
Connarite	$(Ni, Mg)_8(Si_4O_{10})_3(OH)_4 \cdot 6H_2O$	(Decomp. H ₂ SO ₄	
Amesite	$(Mg, Al, Fe(II))_3(Si, Al)_2O_5(OH)_4$	(Decomp. H ₂ SO ₄	•
Cronstedite	(Mg, Ca, Fe(II), Fe(III), Al) _{3~4} (Si, Al) ₂ O ₅		
Chamosite	(Al, Fe(II), Fe(III), Mg, $Ti)_3$ (Si, Al) ₂ O ₅ (Ol	H) ₄ (Decomp. H ₂ SO ₄)
(App.)			
Zeophyllite	$Ca_8Si_8O_{15}(OH, F)_{10}$	(Decomp. HCl, l	HNO ₃) (29376)* ³ >
Friedelite	$Mn_8Si_6O_{15}(OH, Cl)_{10}$	Gel. HCl	
Pyrosmalite	$(Mn, Fe)_8Si_6O_{15}(OH, Cl)_{10}$	Gel. HCl	
Schallerite	$Mn_8(Si, Al)_6O_{15}(OH, Cl)_{10}$	(Gel. HCl)	
Ferroschallerite	$(Fe, Mn)_8(Si, Al)_6O_{15}(OH, Cl)_{10}$	(Gel. HCl)	
Centrallasite	$Ca_4Si_6O_{15}(OH)_2 \cdot 5H_2O$	Decomp. HCl	(30844)
Truscottite	$(Ca, Mg)_4Si_6O_{15}(OH)_2 \cdot 5H_2O$	(Decomp. HCl)	
Gyrolite	$Ca_4Si_6O_{15}(OH)_2 \cdot 3H_2O$ (?)	(Decomp. HCl,	HNO ₃) (31457)(?)
Bementite	$Mn_5Si_4O_{10}(OH)_6$	Gel. hot HCl	
Errite	$Mn_4Si_4O_{10}(OH)_4 \cdot 3H_2O$	(Gel. a.)	
Apophyllite	$KCa_4(Si_4O_{10})_2F\cdot 8H_2O$	Decomp. a.	
Okenite	$Ca_2(Si_4O_{10})\cdot 4H_2O$	Gel. HCl	(31354)
Anhydrous phyllosilicates containing no aluminum.			
Gillespite	BaFeSi ₄ O ₁₀	(Decomp. HCl, 1	HNO₃)
Sanbornite	$Ba_2Si_4O_{10}$	(Decomp. HCl,	HNO ₃)
	geable cations (Na, K, Ca, etc.)		(011)
This realize was calculated recording the chamical formula of chloritoid as Ea Al Si O. (OH).			

- *2) This value was calculated regarding the chemical formula of chloritoid as $Fe_2Al_4Si_2O_{10}(OH)_4$.
- *3) This value was calculated regarding $\cdots \cdots (OH, F)_{10}$ as $\cdots \cdots (OH)_{10}$.

TABLE V. REACTIVITY OF TECTOSILICATE MINERALS TOWARD ACIDS

Minerals	Chemical formula	Reactivity toward acids	Bonding energy (kcal.)
W = Ca,	Na, K; Li, Cs(rare); Mn, Fe, Zn(very rare)		
Z=Si, Al	l; Be(rare); $N=S$, Cl, CO_3 , SO_4 , H_2O		
Silica group			
Quartz	SiO_2	Insol.	37320
Petalite group			
Petalite	(Li, Na)AlSi ₄ O ₁₀	Insol.	
Milarite	$KCa_2AlBe_2Si_{12}O_{30} \cdot \frac{1}{2}H_2O$	Insol.	
Leifite	$Na_4Al_2Si_9O_{22}F_2$	(Insol.)	
Feldspar group WZ4O8,	$W=Na$, Ca, K, Ba; $Z=Si$, Al; $Si:Al=3:1\sim 1$		
(1) Monoclinic syste	em		
Orthoclase	KAlSi ₃ O ₈	Insol.	34266
Soda orthoclase	(K, Na)AlSi₃O ₈	Insol.	
Hyalophane	$(K, Na, Ba)Al(Al, Si)Si_2O_8$	Insol.	
Celsian	$BaAl_2Si_2O_8$	Sol. HCl	

TABLE V. (Continued)

	TABLE V. (Continued)			
Minerals	Chemical formula	Reactivity toward acids	Bonding energy (kcal.)	
(2) Triclinic system(a) Microcline serie	s:—		` ,	
Microcline	KAlSi ₂ O ₈	Insol.	(34521)	
Soda microcline	(K, Na)AlSi ₃ O ₈	(Insol.)	, ,	
Anorthoclase	(Na, K)AlSi ₃ O ₈	Insol.		
(b) Plagioclase serie	es :—			
Albite	NaAlSi ₃ O ₈	Insol.	34335	
Anorthite	CaAl ₂ Si ₂ O ₈	Decomp. HCl	31935	
Leucite	KAlSi ₂ O ₆	Decomp. HCl	(33248)	
Nepheline group WZ ₂ O ₄		-		
Nepheline	KNa ₃ (AlSiO ₄) ₄	Gel. a.	(31465)	
Kaliophyllite	KAlSiO ₄	Gel. a.	(31212)	
β -Eucryptite	β-LiAlSiO ₄	Gel. HCl	,	
Cancrinite group	•			
Cancrinite	$(Na, K)_6Ca_2(SO_4)_2(AlSiO_4)_6$	Sol. HCl		
Davyne	$(Na_2, Ca)_4(CO_3)(H_2O)_{0\sim3}(AlSiO_4)_6$	Gel. HCl		
Sodalite group	(
Sodalite	Na ₈ Al ₆ Si ₆ O ₂₄ Cl ₂	Sol. HCl		
Noselite	Na ₆ (AlSiO ₄) ₆ ·Na ₂ SO ₄	Gel. HCl		
Hauyne	(Na, Ca) _{8~4} (SO ₄) _{2~1} (AlSiO ₄) ₆	Sol. HCl		
Helvite	$Mn_8S_2(BeSiO_4)_6$	Sol. HCl		
Danalite	Fe ₈ S ₂ (BeSiO ₄) ₆	Gel. HCl		
Scapolite series W ₄ Z ₁₂ O ₂₄ I				
Marialite	(Na, Ca) ₄ Al ₃ (Al, Si) ₃ Si ₆ O ₂₄ (Cl, CO ₃ , SO ₄)	Sl. decomp. HO	21	
Meionite	$(Ca, Na)_4Al_3(Al, Si)_3Si_6O_{24}(Cl, CO_3, SO_4)$	Decomp. HCl		
Zeolite group	(,, (,,,,, -			
Mordenite	(Ca, K_2 , Na_2) $Al_2Si_{10}O_{24} \cdot 7H_2O$	Decomp. a.	(32590)	
Heulandite group	(ou, 112, 1142/11201110024 /1120	Decomp. u.	(323)0)	
Clinoptilolite	Co No A15: O 22H O (2)	Dagama a	(22074) (2)	
Heulandite	$Ca_2Na_3Al_7Si_{33}O_{80} \cdot 23H_2O$ (?) $CaAl_2Si_7O_{18} \cdot 6H_2O$	Decomp. a. Decomp. a.	(32974) (?) (32375)	
Epistilbite	CaAl ₂ Si ₆ O ₁₆ ·5H ₂ O	Decomp. HCl	(32268)	
Brewsterite	$(Sr, Ba, Ca)Al_2Si_6O_{16} \cdot 5H_2O$	Decomp. HCl	(32200)	
Desmine group	(51, 54, 64/11/25/65/6 511/25	Decomp. Tres		
Desmine Broup	CaAl ₂ Si ₇ O ₁₈ ·7H ₂ O	Decomp. HCl	(32069)	
Harmotome	BaAl ₂ Si ₆ O ₁₆ ·6H ₂ O	Decomp. HCl	(32009)	
Phillipsite	KCaAl ₃ Si ₅ O ₁₆ ·6H ₂ O	Gel. HCl	(30815)	
Gismondite	CaAl ₂ Si ₂ O ₈ ·4H ₂ O	Gel. HCl	(29530)	
Erionite	$(K_2, Na_2, Ca)Al_2Si_6O_{16} \cdot 6H_2O$ (?)	Sol. HCl	(2)000)	
Chabazite group	(2,2,			
Chabazite	(Ca, Na ₂)Al ₂ Si ₄ O ₁₂ ·6H ₂ O	Decomp. HCl		
Gmelinite	$(Na_2, Ca)Al_2Si_4O_{12} \cdot 6H_2O$	Decomp. HCl		
Levynite	CaAl ₂ Si ₄ O ₁₂ ·6H ₂ O	Gel. a.	(30727)	
Thomsonite group				
Thomsonite	$NaCa_2[Al_4(Al, Si)_2Si_4]O_{20} \cdot 5H_2O$	Gel. HCl		
Gonnardite	$(Ca, Na)_3(Al, Si)_{10}O_{20} \cdot 6H_2O$	(Gel. HCl)		
Ashcroffine	$KNa(Ca, Mg, Mn)Al_4Si_5O_{18} \cdot 8H_2O$	(Gel. HCl)		
Natrolite group				
Natrolite	$Na_2Al_2Si_3O_{10} \cdot 2H_2O$	Gel. a.	(31240)	
Mesolite	$Na_2Ca_2Al_6Si_9O_{30} \cdot 8H_2O$	Gel. a.	(31143)	
Scolesite	$CaAl_2Si_3O_{10} \cdot 3H_2O$	Gel. a.	(31098)	
Edingtonite	$BaAl_2Si_3O_{10} \cdot 3H_2O$	Gel. a.		
Unassigned				
Yugawaralite	$Ca_4Al_7Si_{20}O_{54} \cdot 14H_2O$	(Gel. a.)	(32657)	
Analcite	NaAlSi ₂ O ₆ ·H ₂ O	Gel. HCl	(32109)	
Faujasite	CaNa ₂ Al ₄ Si ₈ O ₂₄ · 16H ₂ O	Decomp. HCl	(30009)	
Laumonite	CaAl ₂ Si ₄ O ₁₂ ·4H ₂ O	Gel. HCl	(31478)	
Ferrierite	$(Na, K)_2MgAl_3Si_{15}O_{36}(OH) \cdot 9H_2O$	(Gel. HCl)		
Questionable	(Co. Mo. Fo) A1 Si O	Total a		
Didymolite	(Ca, Mg, Fe)Al $_2$ Si $_3$ O $_{10}$	Insol. a.		
D'Achiardite	$(K, Na)CaH_3Al_2Si_9O_{24} \cdot 6H_2O$	Decomp. HCl		

trimerite contains Be, it is dissolved by hydrochloric acid. This fact may be due to the presence of a considerable amount of electropositive Mn(II) and Ca.

Generally, it may safely be assumed that 1) of the above-mentioned requirements and the singularity of the above eight metallic elements hold in the case of nesosilicates.

Furthermore, it is noteworthy that the nesosilicate minerals containing Ca, Sr, Ba and Pb react with difficulty with sulfuric acid, because sulfates of these metals are hardly soluble. Of these metals, lead chloride is soluble with difficulty in water, and so the silicate minerals containing Pb do not react easily with hydrochloric acid at ordinary temperatures.

Sorosilicate Minerals.—The results for the solosilicate minerals are listed in Table II. The above inductive rules appear also to be applicable in this case as well as in the case of the nesosilicate minerals. For example, osumilite, indialite, cordierite, the tourmaline and the epidote series minerals may be scarcely attacked by acids, because of the presence of great amounts of Al, and Fe(III); and then for the same reason, schorl probably appears to be undecomposed by acids. In the thalenite group minerals, the fact that thortveiteit is insoluble in acids, in spite of the reactivity of cerite toward acids, is presumably due to the existence of scandium atoms having comparatively large values of ϕ , ϕ' or F. S. Similarly, the fact that bertrandite only in the hemimorphite group is undecomposed by acids appears to be due to the presence of Be. Beryl containing Al and Be is insoluble as shown from the above results. In addition, in the melilite series, leucophanite and meliphanite are slightly decomposed by hydrochloric acid (and perhaps nitric acid) owing to the existence of Be.

From this standpoint, it appears to be deducted that thalenite and rowlandite are probably attacked by acids. Moreover, it is noteworthy that dioptase ($Cu_6Si_6O_{18}\cdot 6H_2O$) having the structure identical with that of beryl⁹) is easily decomposed by acids, because Cu^{2+} has remarkably smaller ϕ , ϕ' or F. S. than those of Be^{2+} . But the unreactivity of the rhodonite series¹⁰) seems to be impossible to explain from this viewpoint, and appears to indicate the necessity of consideration for their structures, but now no satisfactory explanation has been offered as to this fact.

Inosilicate Minerals.—As is generally known,

the inosilicate minerals are structurally classified in the pyroxene and the amphybole group. The former consists in structure with infinite single chain $(SiO_5)^{2-}_{\infty}$ of $(SiO_4)^{4-}$ tetrahedra with common corners, and the latter is characterized by the double chains of the type $(Si_4O_{11})^{6-}_{\infty}$.

The results are listed in Table III.

From Table III, it would be presumably derived that these inosilicate minerals could not for the most part be decomposed by acids. Taken in connection with their structures, this fact would seem to prove that these silicates are probably constructed by the compact arrangements of metallic ions and (SiO₃)_∞²⁻ or $(Si_4O_{11})^{-6}_{\infty}$ ions; in other words, their metal ions are compactly surrounded with the abovecited giant ions. Relating to this structure, it is noteworthy that the inosilicates containing alkali metals, e. g., the acmite-jadeite series and hornblende series, are not decomposed by acids. Therefore, it seems that the structural factor adds a striking effect to the reactivity toward acids in these cases. But the chemical composition of these silicates also has a comparative effect on their reactivity. For example, the inertness of the above-mentioned acmitejadeite series and epididymite are probably in part due to the existence of Be and Al; and from the same viewpoint, it is presumably best to deduct the inertness of carpholite and bavenite. Furthermore, the fact that sepiolite and attapulgite are easily decomposed by acids would probably be due to the existence of large voids such as caves passing through between chains of $(Si_4O_{11})^{6-}_{\infty}$ ions¹¹⁾.

Phyllosilicate Minerals. — As stated above, it is confirmed from the Table IV that all the 1:1 type phyllosilicate minerals are easily decomposed by acids, except the aluminum ones (e.g., the kaolin minerals) as was expected. On the contrary, in the 2:1 type phyllosilicate minerals, the magnesium type (talc) also is unattacked by acids, as well as the aluminum type (pyrophyllite). This seems to be mainly due to its 2:1 type structure; namely, all the magnesium ions in talc are compactly sandwiched with the two infinite layerous ions $(Si_2O_5)^{2-}_{\infty}$. Furthermore, the inertness of the muscovite and lepidolite series appears to be in part due to the above-cited structure and in part to the existence of The biotite series contain no aluminum. aluminum for positive ions, and then these would perhaps be attacked by acids.

Tectosilicate Minerals. — Table V seems to indicate that the reactivity of tectosilicate minerals toward acids are scarcely connected

⁹⁾ N. V. Belov, Compt. Rend. Acad. Sci. Russ. 37, 139 (1942).

¹⁰⁾ E. H. Kraus, W. F. Hunt and L. S. Ramsdell, "Mineralogy, An Introduction to the Study of Minerals and Crystals", 3rd. Ed., McGraw-Hill Book Co., Inc., New York and London (1936), p. 368.

¹¹⁾ W. T. Grandquist and R. C. Amero, J. Am. Chem. Soc., 70, 3265 (1948).

with their chemical compositions. For example, the fact that orthoclase, microclire, and albite are insoluble to acids, and leucite and nepheline are decomposed by acids, cannot be explained from their chemical compositions. Therefore, in this case, it is suggested that their structures have an important effect on their reactivity.

As for their structures, the position and state of metallic ions in their crystal lattices would seem to carry on connection with their reactivity.

Results from the Bonding Energies

It appears that the bonding energies of the silicate minerals are closely related to their reactivity. Especially the bonding energies of the tectosilicate minerals would seem to be important. As for this problem, Keller¹²⁾ made a computation by adding the energies of the bonds between their constituent cations and oxygen, starting with the elements in the gaseous state, on the basis of the data from Huggins and Sun¹³⁾.

The author computed the bonding energies of the various silicate minerals by adding the bonding energies of their constituent elements, utilizing data compiled by Huggins and Sun¹³), and Keller¹²). Of the value in Tables I—V, those in parentheses are computed by the author, and the rest are reprinted from Keller's paper.

It is reasonable to assume that there are some deep relationships between the reactivity and the bonding energies of silicate minerals. Judging from the comparison of these two properties in Tables I—V, the following results were obtained. Generally speaking, the neso-, soro-, ino-, and phyllo-silicate minerals of which bonding energies are less than about 30500 kcal. and the tectosilicate minerals of which these energies are less than about 33500 kcal. seem to be decomposed by acids. The

fact that the tectosilicate minerals alone are in particular different from others appears presumably to be relative to the singularity of themselves; namely, this seems to depend primarily upon their ultimately polymerized structures—the three-dimentional frameworks—constructed by complete sharing of all oxygens in all the tetrahedra contained in their structures.

Summary

In this paper, the author proposed a classified table of metals contained in silicate minerals, and the qualitative and conventional rules in which it appeared possible to predict the reactivity of all the known silicate minerals toward ordinary mineral acids. In the classification and rules, ionic potential, Goldschmidt's polarizing power, and field strength of the metals in the silicate minerals play important roles.

The rules are summarized as follows: 1) the silicate minerals—especially, the neso- and sorosilicate ones composed of the comparative simple ionic crystal lattices-containing the less electropositive metals (e.g., Ti, Be, Al, Cr, V(III), Fe(III), Mn(III), Zr, etc.) are generally unattacked by acids; 2) in the ino-, phyllo-, and tecto-silicate minerals, which contain various polymerized and giant silicate ions, their structures exert a favorable influence upon their reactivity toward acids. Thus, in these minerals, it is necessary for us to take their structural effects into consideration, besides the above rule 1); and 3) the bonding energies of silicate minerals are closely related to their reactivity. In general, the neso-, soro-, ino-, and phyllo-silicate minerals of which bonding energies are less than about 30500 kcal, and the tectosilicate ones of which the energies are less than about 33500 kcal. seem to be decomposed by acids.

Department of Applied Chemistry
Faculty of Industry
Iwate University
Ueda, Morioka

¹²⁾ W. D. Keller, Am. Mineralogist, 39, 783 (1954).
13) M. L. Huggins and K-H. Sun, J. Phys. Chem., 50, 319 (1946).